【题目】如图,菱形ABCD周长为8,∠BAD=120°,P为BD上一动点,E为CD中点,则PE+PC的最小值长为 .
【答案】
【解析】
试题分析:先求出菱形各边的长度,作点E关于直线BD的对称点E′,连接CE′交BD于点P,则CE′的长即为PE+PC的最小值,由菱形的性质可知E′为AD的中点,由直角三角形的判定定理可得出△DCE′是直角三角形,利用勾股定理即可求出CE′的长.
解:∵菱形ABCD的周长为8,
∴AD=DC=2,
作点E关于直线BD的对称点E′,连接CE′交BD于点P,则CE′的长即为PE+PC的最小值,
∵四边形ABCD是菱形,
∴BD是∠ADC的平分线,
∴E′在AD上,由图形对称的性质可知,DE=DE′=AD=×2=1,
∵DE′=DE=DC,
∴△DCE′是直角三角形,
∴CE′===,
故PE+PC的最小值是.
科目:初中数学 来源: 题型:
【题目】某种速冻水饺的储藏温度是-18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )
A、-17℃ B、-22℃ C、-18℃ D、-19℃
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为55000000千米,这个数据用科学记数法可表示为( )
A.5.5×106
B.5.5×107
C.55×106
D.0.55×108
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠AEC=90°.点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.
(1)当t= 时,四边形ABQP成为矩形?
(2)当t= 时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?
(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com