精英家教网 > 初中数学 > 题目详情
在直角坐标系中,直线y=2x+4交x轴于A,交y轴于D
(1)以A为直角顶点作等腰直角△AMD,直接写出点M的坐标为
 

(2)以AD为边作正方形ABCD,连BD,P是线段BD上(不与B、D重合)的一点,在BD上截取PG=
10
,过G作GF⊥BD,交BC于F,连AP则AP与PF有怎样的数量关系和位置关系?并证明你的结论;
(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD、PG、BG之间有何关系,精英家教网并证明你的结论.
分析:(1)先根据y=2x+4确定A点与D点坐标,然后把AD绕点A顺时针(或逆时针)旋转90°,即把Rt△ADO绕点A顺时针(或逆时针)旋转90°,点D的对应点为点M,利用三角形全等易确定M的坐标;
(2)过A作AH⊥DB,先计算出AD=2
5
,利用正方形的性质得到BD=2
5
2
=2
10
,AH=DH=
1
2
BD=
10
,由PG=
10
得DP+BG=
10
,则PH=BG,易证Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;
(3)把△AGB绕A点逆时针旋转90°得到△AMD,利用旋转的性质得到∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP2+BG2=PM2;由∠PAG=45°,则∠DAP+∠BAG=45°,得到∠MAD+∠DAP=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即有DP2+BG2=PG2
解答:解:(1)M(-6,2)或(2,-2);

(2)AP=PF且AP⊥PF.理由如下:
过A作AH⊥DB,如图,精英家教网
∵A(-2,0),D(0,4),
∴AD=
42+22
=2
5

∵四边形ABCD为正方形,
∴BD=2
5
2
=2
10

∴AH=DH=
1
2
BD=
10

而PG=
10

∴DP+BG=
10

而DH=DP+PH=
10

∴PH=BG,
∵∠GBF=45°,
∴BG=GF,
∴Rt△APH≌Rt△PFG,
∴AP=PF,∠PAH=∠FPG,
∴∠APH+∠GPF=90°,即AP⊥PF.

(3)DP2+BG2=PG2.理由如下:
把△AGB绕A点逆时针旋转90°得到△AMD,连MP,如图,精英家教网
∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,
∴∠MDP=90°,
∴DP2+BG2=PM2
又∵∠PAG=45°,
∴∠DAP+∠BAG=45°,
∴∠MAD+∠DAP=45°,即∠MAP=45°,
而AM=AG,
∴△AMP≌△AGP,
∴MP=PG,
∴DP2+BG2=PG2
点评:本题考查了一次函数的综合题:利用一次函数的解析式确定某些线段的长,然后根据正方形的性质、三角形全等的判定与性质以及旋转的性质证明线段的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:在直角坐标系中,直线y=2x+2与x轴交于点A,与y轴交于点B.
(1)画出这个函数的图象,并直接写出A,B两点的坐标;
(2)若点C是第二象限内的点,且到x轴的距离为1,到y轴的距离为
12
,请判断点C是否在这条直线上?(写出判断过程)
(3)在第(2)题中,作CD⊥x轴于D,那么在x轴上是否存在一点P,使△CDP≌△AOB?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,直线y=6-x与双曲线y=
4
x
(x>0)
的图象相交于A、B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为(  )
A、4,6B、4,12
C、8,6D、8,12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,直线AB:y=-
4
3
x+4
分别交x、y轴于点A、B,线段OA上的一动点C以精英家教网每秒1个单位的速度由O向点A运动,线段BA上的一动点D同时以每秒
5
3
个单位的速度由B向A运动.
(1)在运动过程中△ADC与△ABO是否相似?试说明你的理由;
(2)问当运动时间t为多少秒时,以CD为直径的圆与y轴相切?
(3)在运动过程中是否存在某一时刻,使得△OCD与△ACD相似?若存在,求出运动时间;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•建邺区一模)如图,在直角坐标系中,直线y=2x与双曲线y=
kx
(k≠0)
相交于A、B两点,过A作AC⊥x轴,过B作BC⊥y轴,AC、BC交于点C且△ABC的面积为8,则k=
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,直线y=kx+3(k≠0)过点(2,2),且与x轴,y轴分别交于A、B两点,求不等式kx+3≤0的解集.

查看答案和解析>>

同步练习册答案