精英家教网 > 初中数学 > 题目详情

如图,等边△ABC中,AC=10,点O在AC上,且AO=2,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    8
D
考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.
分析:根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.
解答:解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,
∴∠APO=∠COD.
在△APO和△COD中,
∴△APO≌△COD(AAS),
∴AP=CO,∵CO=AC-AO=8,∴AP=8.
故选D.
点评:本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)G为CF延长线上一点,连接BG.若BG=5,BC=8,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.
求证:△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足为G,求∠FBG的度数.

查看答案和解析>>

同步练习册答案