精英家教网 > 初中数学 > 题目详情

已知a-b=1,a2+b2=25,则a+b的值为


  1. A.
    7
  2. B.
    -7
  3. C.
    ±7
  4. D.
    ±9
C
分析:先将a-b=1两边平方,再结合a2+b2=25,求出ab的值,然后利用完全平方公式求出a+b的值.
解答:∵a-b=1,
∴(a-b)2=12
∴a2+b2-2ab=1,
于是25-2ab=1,
故ab=12,
则(a+b)2=a2+b2+2ab=25+2×12=49.
于是a+b=±7.
故选C.
点评:此题将完全平方公式和整体思想相结合,考查了同学们的“构造”能力,解答时要注意式子的特点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24最小值3,则实数a的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知a-b=1,a2+b2=25,则a+b的值为
±7

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知a-b=1,a2-b2=-1,则a4-b4=
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a-b=3,a2-b2=9,则a=
 
,b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形的面积是a2+4ab+4b2(a>0,b>0),利用因式分解,写出表示该正方形的边长的代数式
2a+b
2a+b

查看答案和解析>>

同步练习册答案