精英家教网 > 初中数学 > 题目详情
13.(1)计算:-30-$\root{3}{27}$+|1-$\sqrt{2}$|+$\sqrt{18}$
(2)计算:$\sqrt{75}$÷$\sqrt{3}$-$\sqrt{\frac{1}{2}}$×$\sqrt{128}$+$\root{3}{8}$.

分析 (1)原式第一项利用零指数幂法则计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项化为最简二次根式,计算即可得到结果;
(2)原式利用二次根式乘除法则,以及立方根定义计算即可得到结果.

解答 解:(1)原式=-1-3+$\sqrt{2}$-1+3$\sqrt{2}$=-5+4$\sqrt{2}$;
(2)原式=$\sqrt{25}$-$\sqrt{64}$+2=5-8+2=-1.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,正方形OABC的面积为4,反比例函数$y=\frac{k}{x}$(x>0)的图象经过点B.
(1)求点B的坐标和k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形AMC′B、CBA′N.设线段MC′、NA′分别与函数$y=\frac{k}{x}$(x>0)的图象交于点E、F,求直线EF的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示
选手
方差0.0300.0190.1210.022
则这四人中发挥最稳定的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在菱形ABCD中,∠B=60°,点E、F分别在边AB、AD上,且AE=DF.
(1)试判断△ECF的形状并说明理由;
(2)若AB=6,那么△ECF的周长是否存在最小值?如果存在,请求出来;如果不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,直线y=kx+5(k≠0)与双曲线y=$\frac{m}{x}$(m≠0)的一个交点为A,与x轴交于点B(5,0).
(1)求k的值;
(2)若AB=3$\sqrt{2}$,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知实数a,b,满足$\frac{\sqrt{3a-b}+|{a}^{2}-49|}{\sqrt{a+7}}$=0,c是$\sqrt{35}$的整数部分,求a+2b+3c的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物.2.5微米即0.0000025米,用科学记数法表示0.0000025为2.5×10-6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1
(2)在(2)的条件下,写出A1、O1、B1的坐标;
(3)求五边形AA 1O1OB的面积.

查看答案和解析>>

同步练习册答案