分析 (1)先过点A作AH⊥BC于H,判定△ABC≌△AED,得出AF=AH,再判定Rt△AFG≌Rt△AHG,即可得出∠AGF=∠AGH;
(2)先判定Rt△ADF≌Rt△ABH,得出S四边形DGBA=S四边形AFGH=6,再根据Rt△AFG≌Rt△AHG,求得Rt△AFG的面积=3,进而得到FG的长.
解答
解:(1)过点A作AH⊥BC于H,
∵△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,
∴△ABC≌△ADE(SAS),
∴S△ABC=S△AED,
又∵AF⊥DE,
即$\frac{1}{2}$×DE×AF=$\frac{1}{2}$×BC×AH,
∴AF=AH,
又∵AF⊥DE,AH⊥BC,AG=AG,
∴Rt△AFG≌Rt△AHG(HL),
∴∠AGF=∠AGH,
即GA平分∠DGB;
(2)∵△ABC≌△ADE,
∴AD=AB,
又∵AF⊥DE,AH⊥BC,AF=AH,
∴Rt△ADF≌Rt△ABH(HL),
∴S四边形DGBA=S四边形AFGH=6,
∵Rt△AFG≌Rt△AHG,
∴Rt△AFG的面积=3,
∵AF=$\frac{3}{2}$,
∴$\frac{1}{2}$×FG×$\frac{3}{2}$=3,
解得FG=4.
点评 本题主要考查了全等三角形的判定与性质,解决问题的关键是作辅助线构造全等三角形,解题时注意:全等三角形的面积相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y1<y2<y3 | B. | y3<y2<y1 | C. | y3<y1<y2 | D. | y2<y1<y3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com