精英家教网 > 初中数学 > 题目详情

如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM=________.

6
分析:根据相交弦定理可证AB•BC=EB•BF=(EM+MB)(MF-MB)=AM2-MB2=8,又由直径对的圆周角是直角,用勾股定理即可求解AM=6.
解答:解:作过点M、B的直径EF,交圆于点E、F,
则EM=MA=MF,
由相交弦定理知,AB•BC=EB•BF=(EM+MB)(MF-MB)=AM2-MB2=8,
∵AB是圆O的直径,
∴∠AMB=90°,
由勾股定理得,AM2+MB2=AB2=64,
∴AM=6.
点评:本题利用了相交弦定理,直径对的圆周角是直角,勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=
3
AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.
(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=
3
AC;(请你完成此证明)
(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM=
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=
kx
(x>0)也恰好经过点A.
(1)求k的值;
(2)如图2,过O点作OD⊥AC于D点,求CD2-AD2的值;
(3)如图3,点P为x轴上一动点.在(1)中的双曲线上是否存在一点Q,使得△PAQ是以点A为直角顶点的等腰三角形.若存在,求出点P、点Q的坐标,若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数y=
kx
(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD中,点P、点Q分别在BC、CD上,∠PAQ=45゜
(1)如图1,若AQ交BC的延长线于E,若AB=4,BP=1,求PE;
(2)如图2,过P点作PM⊥AC,QN⊥AC,垂足分别为M、N,若AB=4,求AM•AN的值;
(3)如图3,若AP交BD于F点,连FQ,求证:AF=FQ.

查看答案和解析>>

同步练习册答案