精英家教网 > 初中数学 > 题目详情
精英家教网如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,那么,CE=DF吗?
分析:相等,先利用HL来判定Rt△ABC≌Rt△BAD,得出AC=BD,∠CAB=∠DBA,再利用AAS判定△ACE≌△BDF,从而推出CE=DF.
解答:解:CE=DF.理由:
在Rt△ABC和Rt△BAD中,
AD=BC
AB=BA

∴Rt△ABC≌Rt△BAD(HL),
∴AC=BD,∠CAB=∠DBA.
在△ACE和△BDF中,
∠CAB=∠DBA
∠AEC=∠BFD=90°
AC=BD

∴△ACE≌△BDF(AAS),
∴CE=DF.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,AC=BC,AD=BD,下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BC,DE是AB的垂直平分线,∠CAE=30°,则∠B=
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:AC⊥BC,CD⊥AB,则点B到AC的距离是线段
BC
BC
的长.

查看答案和解析>>

同步练习册答案