精英家教网 > 初中数学 > 题目详情
已知,如图,AC=BC,AD=BD,下列结论中不正确的是(  )
分析:根据SSS证△ACD≌△BCD,推出∠ADC=∠BDC,根据等腰三角形的性质推出OA=OB,AB⊥CD,即可判断C、D、B;不能证OC和OD所在的三角形全等,也不能利用其它方法证OD=OC.
解答:解:在△ACD和△BCD中
AC=BC
AD=BD
CD=CD

∴△ACD≌△BCD,
∴∠ACD=∠BCD,∠ADC=∠BDC,
∴OA=OB,CD⊥AB(三线合一定理),故选项B、C、D错误;
根据已知不能推出OC=OD,故本选项正确;
故选A.
点评:本题考查了全等三角形的性质和判定的应用,主要培养学生运用性质进行推理的能力,题目较好,但是一道比较容易出错的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、已知:如图,AC=BD,DF=CE,∠ECB=∠FDA.求证:AF=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AC=DF,AC∥FD,AE=DB,则根据
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E精英家教网是切点,
求证:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1OD

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知:如图,AC、BD交于O点,OA=OC,OB=OD、则不正确的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC平分∠BAD,CE⊥AB于E点,CF⊥AD于F点,在AB上有一点M,且CM=CD.
(1)请你用尺规作出点M的位置,
(2)若AF=12,DF=4,求AM的长,
(3)试说明∠CDA与∠CMA的关系.

查看答案和解析>>

同步练习册答案