【题目】“节能环保,低碳生活”是我们倡导的一种生活方式.某家电商场计划用12万元购进节能型电视机、洗衣机和空调共40台.三种家电的进价及售价如表所示:
种类 | 进价(元/台) | 售价(元/台) |
电视机 | 5000 | 5480 |
洗衣机 | 2000 | 2280 |
空 调 | 2500 | 2800 |
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的三倍.请问商场有哪几种进货方案?
(2)在“2016年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预计最多送出消费券多少张?
【答案】
(1)解:设购进电视机的数量是x台,则购进洗衣机的数量是x台,空调的数量为(40﹣2x)台,由题意,得
,
解得:8≤x≤10.
∵x为整数,
∴x=8,9,10.
∴有三种方案:
方案1,电视机8台,洗衣机8台,空调24台;
方案2,电视机9台,洗衣机9台,空调22台;
方案3,电视机10台,洗衣机10台,空调20台;
(2)解:设售价总额为y元,由题意,得
y=5480x+2280x+2800(40﹣2x)=2160x+112000.
∴k=2160>0,
∴y随x的增大而增大
∴当x=10时,y最大=2160×10+112000=133600,
故时送出的消费券的张数为:133000÷1000=133张.
答:商家预计最多送出消费券133张.
【解析】(1)由关键词“12万元购进节能型电视机、洗衣机和空调共40台”、“电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的三倍”可构建不等式组求出未知数范围,求出整数解;(2)最值问题可利用函数思想,构建函数,若是一次函数,可求出自变量的范围,利用函数性质,求出最值.
科目:初中数学 来源: 题型:
【题目】小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com