精英家教网 > 初中数学 > 题目详情
15.在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为(  )
A.5:3B.3:2C.10:7D.8:5

分析 将正方形IQKJ平移使左边与大正方形左边重合(红色),设右上角未被盖住部分的面积为x平方厘米,列出方程求出x,然后求出正方形边长即可.

解答 解:将正方形IQKJ平移使左边与大正方形左边重合(红色),三个正方形覆盖的总面积不变,
这时,大正方形被分成四个部分,蓝色正方形面积为20平方厘米,
红、黄两块显露的矩形面积相等,其面积和是44-20=24平方厘米,
所以红黄两矩形面积均为12平方厘米,
设右上角未被盖住部分的面积为x平方厘米(如图)
则12:20=x:12
    20x=12×12
    20x=144
      x=7.2
因此大正方形的面积为44+7.2=51.2(平方厘米),
所以大正方形ABCD边长为$\sqrt{51.2}$,正方形BEFG的边长为$\sqrt{20}$,
所以大正方形ABCD和小正方形BEFG的边长之比为$\sqrt{51.2÷20}$=$\sqrt{2.56}$=1.6=$\frac{8}{5}$.
故选D.

点评 本题考查正方形的性质、解题的关键是通过平移三个正方形覆盖的总面积不变,设未知数列出方程解决问题,学会把不规则图形变成规则图形解决,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.计算:2(x-3)2=x2-9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=$\left\{\begin{array}{l}{y(x≥0)}\\{-y(x<0)}\end{array}\right.$,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).
(1)若点(-1,-2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为(-1,2)
(2)若点P在函数y=-x2+16(-5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是-16≤y′≤16,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,已知△ABC,∠C=90°,∠A=30°,AC=$\sqrt{3}$,动点D在边AC上,以BD为边作等边△BDE(点E、A在BD的同侧),在点D从点A移动至点C的过程中,点E移动的路线为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某小学三年级到六年级的全体学生参加“礼仪”知识测试,试题共有10题,每题10分.从中随机抽取了部分学生的成绩进行统计,发现抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.
                   成绩情况统计表
成绩100分90分80分70分60分
人数214036185
频率0.1750.3330.30.150.04
根据图表中提供的信息,回答下列问题:
(1)测试学生中,成绩为80分的学生人数有36名;众数是90分;中位数是90分;
(2)若该小学三年级到六年级共有1800名学生,则可估计出成绩为70分的学生人数约有270名.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.据国家教育部、卫生部最新调查表明:我国小学生近视率超过25%,初中生近视率达到70%,每年以8%的速度增长,居世界第一位.某市为调查中学生视力情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成统计表和扇形统计图如下:
被抽取学生视力在4.9以下的人数变化情况统计表
 年份 20142015 2016 
 人数300 500 800 
解答下列问题:
(1)扇形统计图中x=10;
(2)该市共抽取了九年级学生2000名;
(3)若该市今年共有九年级学生约8.5万名,请你估计该市九年级学生视力不良(4.9以下)的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,AB=AE,BE的延长线分别交AD、AC的延长线于点F、G.
(1)求证:AF=FG.
(2)已知tanG=$\frac{1}{2}$,求sin∠CBG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某移动公司近日推出了如下两种月收费方式.
 收费方式 月租费/元 赠送通话时间/分钟 超时费/(元/分钟)
 A k l 0.2
 B m n 0.1
已知k,l满足$\left\{\begin{array}{l}{2l-7k=1}\\{5k-l=10}\end{array}\right.$设每月的通话时间为x分钟,A、B两种收费方式的收费金额分别为yA元、yB元.
(I)求k,1的值.
(2)如图是yB与x之间的函数关系图象,请根据图象填空:m=10,n=50.
(3)写出yA与x之间的函数关系式.
(4)选择哪种收费方式较合算?为什么?

查看答案和解析>>

同步练习册答案