精英家教网 > 初中数学 > 题目详情

【题目】如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为

【答案】(36,0)
【解析】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,
∴AB=5,
∴图③、④的直角顶点坐标为(12,0),
∵每旋转3次为一循环,
∴图⑥、⑦的直角顶点坐标为(24,0),
∴图⑨、⑩的直角顶点为(36,0).
故答案为:(36,0).
如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有一组有规律排列的数:1、﹣1、、﹣、﹣、1、﹣1、、﹣、﹣其中,1、﹣1、、﹣、﹣这六个数按此规律重复出现,问:

(1)第50个数是什么数?

(2)把从第1个数开始的前2017个数相加,结果是多少?

(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、2、3、4的外角的角度和为220°,则∠BOD的度数是(  )

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90°

当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?写出你猜想的结论,并说明理由;

将图1中的ADE绕点A顺时针旋转α角(0°α<90°,如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=6,A=135°,点P是菱形内部一点,且满足SPCD=,则PC+PD的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论
①a>0,②b>0,③c>0,④b2﹣4ac>0
其中正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案