精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,-4).    
(1)求该二次函数的解析式;
(2)当y>-3,写出x的取值范围;
(3)A、B为直线y=-2x-6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.

解:(1)∵点(1,0),(5,0),(3,-4)在抛物线上,

解得
∴二次函数的解析式为:y=x2-6x+5.

(2)在y=x2-6x+5中,令y=-3,即x2-6x+5=-3,
整理得:x2-6x+8=0,解得x1=2,x2=4.
结合函数图象,可知当y>-3时,x的取值范围是:x<2或x>4.

(3)设直线y=-2x-6与x轴,y轴分别交于点M,点N,
令x=0,得y=-6;令y=0,得x=-3
∴M(-3,0),N(0,-6),
∴OM=3,ON=6,由勾股定理得:MN=3
∴tan∠MNO==,sin∠MNO==
设点C坐标为(x,y),则y=x2-6x+5.
过点C作CD⊥y轴于点D,则CD=x,OD=-y,DN=6+y.
过点C作直线y=-2x-6的垂线,垂足为E,交y轴于点F,
在Rt△CDF中,DF=CD•tan∠MNO=x,CF====x.
∴FN=DN-DF=6+y-x.
在Rt△EFN中,EF=FN•sin∠MNO=(6+y-x).
∴CE=CF+EF=x+(6+y-x),
∵C(x,y)在抛物线上,∴y=x2-6x+5,代入上式整理得:
CE=(x2-4x+11)=(x-2)2+
∴当x=2时,CE有最小值,最小值为
当x=2时,y=x2-6x+5=-3,∴C(2,-3).
△ABC的最小面积为:AB•CE=×2×=
∴当C点坐标为(2,-3)时,△ABC的面积最小,面积的最小值为
分析:(1)利用待定系数法求出抛物线的解析式;
(2)求出y=3时x的值,结合函数图象,求出y>-3时x的取值范围;
(3)△ABC的底边AB长度为2,是定值,因此当AB边上的高最小时,△ABC的面积最小.如解答图所示,由点C向直线y=-2x-6作垂线,利用三角函数(或相似三角形)求出高CE的表达式,根据表达式求出CE的最小值,这样问题得解.
点评:本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、一次函数的图象与性质、解直角三角形(或相似三角形)等知识点.难点在于第(3)问,确定高CE的表达式是解题的关键所在;本问的另一解法是:直线y=-2x+k与抛物线y=x2-6x+5相切时,切点即为所求的点C,同学们可以尝试此思路,以求触类旁通、举一反三.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案