精英家教网 > 初中数学 > 题目详情

如图,在等边△ABC中,D、E、F是三边中点.在图中可以数出的三角形中,任选一对三角形(不计顺序),如果这2个三角形至少有一条边相等,便称之为一对“友好三角形”.那么,从图中选出“友好三角形”共有


  1. A.
    120对
  2. B.
    240对
  3. C.
    234对
  4. D.
    114对
D
分析:把题中的所有三角形按大小分为4类,表示出相应的边长,排除不是“友好三角形”的对数,让总对数减去不是“友好三角形”的对数即可得到所求.
解答:原图中有4类三角形.若设AB=6,则AE=3,AD=3,AO=2,OD=,那么4类三角形的边长(按自小到大的顺序排列)为,3,2;2,2,6;3,3,6;6,6,6.
若把这些三角形分为a,b,c,d共4类.可得:
a,b,c3类的三角形,任取2个,必有一条边相等;
b,c,d类的三角形,任取2个,也必有一条边相等;
只有a类和d类的三角形没有相等的边,这种情形的三角形共有6对,是非“友好三角形”.
∵图中共有16个三角形,任意取2个后,不考虑顺序应有16×15÷2=120种选取方法,
∴“友好三角形”共有120-6=114对.
故选D.
点评:主要考查乘法原理的应用;把所给三角形合理进行分类,根据所给定义判断“友好三角形”是解决本题的突破点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案