精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线与x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<x2 , 与y轴交于点C(0,﹣4),其中x1 , x2是方程x2﹣4x﹣12=0的两个根.

(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵x2﹣4x﹣12=0,

∴x1=﹣2,x2=6.

∴A(﹣2,0),B(6,0),

又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x﹣6),

将点C的坐标代入,求得

∴抛物线的解析式为


(2)

解:设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)).

∵点A的坐标为(﹣2,0),点B的坐标为(6,0),

∴AB=8,AM=m+2,

∵MN∥BC,∴△MNA∽△BCA.

=

=

∴当m=2时,SCMN有最大值4.

此时,点M的坐标为(2,0);


(3)

解:∵点D(4,k)在抛物线 上,

∴当x=4时,k=﹣4,

∴点D的坐标是(4,﹣4).

①如图(2),当AF为平行四边形的边时,AF平行且等于DE,

∵D(4,﹣4),∴DE=4.

∴F1(﹣6,0),F2(2,0),

②如图(3),当AF为平行四边形的对角线时,设F(n,0),

∵点A的坐标为(﹣2,0),

则平行四边形的对称中心的横坐标为:

∴平行四边形的对称中心坐标为( ,0),

∵D(4,﹣4),

∴E'的横坐标为: ﹣4+ =n﹣6,

E'的纵坐标为:4,

∴E'的坐标为(n﹣6,4).

把E'(n﹣6,4)代入 ,得n2﹣16n+36=0.

解得

综上所述F1(﹣6,0),F2(2,0),F3(8﹣2 ,0),F4(8+2 ,0).


【解析】(1)根据一元二次方程解法得出A,B两点的坐标,再利用交点式求出二次函数解析式;(2)首先判定△MNA∽△BCA.得出 ,进而得出函数的最值;(3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知AB为⊙O直径,以OA为直径作⊙M.过B作⊙M得切线BC,切点为C,交⊙O于E.
(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明);
(2)证明:∠EAC=∠OCB;
(3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.

(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).

(1)当t=s时,△BPQ为等腰三角形;
(2)当BD平分PQ时,求t的值;
(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x﹣3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2 . 设d=d1+d2 , 下列结论中:
①d没有最大值;
②d没有最小值;
③﹣1<x<3时,d随x的增大而增大;
④满足d=5的点P有四个.
其中正确结论的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案