在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.
![]()
科目:初中数学 来源: 题型:
八年级学生小明是一个喜欢思考问题而又乐于助人的好学生,一天邻居家读小学的小李,请他帮忙检查作业:
7×9=63;8×8=64;
11×13=143;12×12=144;
24×26=624;25×25=625.
小明仔细检查后,夸小李聪明,作业全对了!小明还从这几题中发现了一个规律,你知道小明发现了什么规律吗?请用字母表示这一规律,并说明它的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为
![]()
A B C D
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系xOy中,二次函数
的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).
(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使
A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.
(1)如图1,连接BG、DE.求证:BG=DE;
(2)如图2,如果正方形ABCD的边长为
,将正方形CEFG绕着点C旋转到某一位置时恰好使得C
G//BD,BG=BD.
①求
的度数;
②请直接写出正方形CEFG的边长的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com