精英家教网 > 初中数学 > 题目详情

已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE

(1)如图1,连接BGDE.求证:BG=DE

(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BDBG=BD.

①求的度数;

②请直接写出正方形CEFG的边长的值.

 



解:(1)证明:

∵四边形为正方形,

.

.

.

∴△≌△.

.

(2)①连接BE .

由(1)可知:BG=DE.

.

.     

,

.

,

∴△≌△.

.

,

.

∴△.

②正方形的边长为.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,P是反比例函数图象上第二象限内的一 点,若矩形PEOF的面积为3,则反比例函数的解析式是

   A.        B.       C.             D.

 


查看答案和解析>>

科目:初中数学 来源: 题型:


在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:


在△中,分别是边上的点,边的等分点,.如图1,若,则∠+∠+∠+ +∠             度;如图2,若,则∠+∠+∠+ +∠            (用含的式子表示).

 


查看答案和解析>>

科目:初中数学 来源: 题型:


如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3)

(1)求出的函数关系式,并写出自变量的取值范围;

(2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是

A.点P在⊙O上              B.点P在⊙O

C.点P在⊙O外              D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在中,AE=3,EC=2且DE=2.4,则BC等于______.

查看答案和解析>>

科目:初中数学 来源: 题型:


若两个圆的半径分别为2和1,圆心距为3,则这两个圆的位置关系是

   A.内含                   B.内切                        C.相交                    D.外切

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,是⊙的切线, 是切点,是⊙的直径,.求的度数.

查看答案和解析>>

同步练习册答案