精英家教网 > 初中数学 > 题目详情
17.计算
(1)12-(-18)+(-7)-15
(2)-81÷$\frac{9}{4}$×$\frac{4}{9}$÷(-16)
(3)-12016-(1-0.5)×$\frac{1}{3}$×[2-(-3)2].

分析 (1)原式利用减法法则变形,计算即可得到结果;
(2)原式从左到右依次计算即可得到结果;
(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.

解答 解:(1)原式=12+18-7-15=30-22=8;
(2)原式=81×$\frac{4}{9}$×$\frac{4}{9}$×$\frac{1}{16}$=1;
(3)原式=-1-$\frac{1}{2}$×$\frac{1}{3}$×(-7)=-1+$\frac{7}{6}$=$\frac{1}{6}$.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.下列运算正确的是(  )
A.a•a3=a4B.a6÷a2=a3C.(a32=a5D.(a-3)2=a2-9

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.DE是△ABC的中位线,如果DE=2,那么BC=4.错(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.满足-$\sqrt{3}$<x<$\sqrt{5}$的整数x的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.小明在解决问题:已知a=$\frac{1}{2+\sqrt{3}}$,求2a2-8a+1的值,他是这样分析与解的:
∵a=$\frac{1}{2+\sqrt{3}}$=$\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$=2-$\sqrt{3}$
∴a-2=-$\sqrt{3}$
∴(a-2)2=3,a2-4a+4=3
∴a2-4a=-1
∴2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1
请你根据小明的分析过程,解决如下问题:
(1)化简$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{100}+\sqrt{99}}$
(2)若a=$\frac{1}{\sqrt{2}-1}$求4a2-8a+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图A在数轴上所对应的数为-2.
(1)点B在点A右边距A点4个单位长度,求点B所对应的数;
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到-6所在的点处时,求A,B两点间距离.
(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.细心算一算:
(1)9-13+16
(2)4×(-5)-8÷(-4)
(3)($\frac{1}{2}$-$\frac{2}{3}$+1)×(-24)
(4)$\sqrt{9}$-($\sqrt{3}$)2-$\sqrt{(-6)^{2}}$-$\root{3}{-27}$
(5)$\root{3}{\frac{26}{27}-}1$-$\sqrt{(1-\frac{5}{4})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.一个数小于它的相反数,且在数轴上到-1的距离为2的数为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.写出下列各式有意义时字母的取值范围.
(1)$\frac{\sqrt{x+1}}{x-1}$;(2)$\sqrt{{m}^{2}+2m+4}$.

查看答案和解析>>

同步练习册答案