精英家教网 > 初中数学 > 题目详情
如图,已知点D、E分别在△ABC的边AB和AC上,且DE∥BC,S△AED:S梯形EDBC=1:2,则AE:AC的比值是   
【答案】分析:由DE∥BC得△ADE∽△ABC,再根据相似三角形面积比等于相似比的平方进而求出AE:AC的比值.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,
∵S△ADE:S梯形BCED=1:2,
∴S△ADE:S△ABC=1:3,
∴AE:AC=1:
故答案为:1:
点评:本题考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,已知点M、N分别是△ABC的边BC、AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点,求证:P、C、Q三点在同一条直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点M、N分别是平行四边形ABCD的边AB、DC的中点,求证:∠DAN=∠BCM.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,已知点E、F分别是菱形ABCD的边AB、AD上,BE=DF,
求证:AE=AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•金山区二模)如图,已知点D,E分别是边AC和AB的中点,设
BO
=
a
OC
=
b
,那么
ED
=
a
+
b
2
a
+
b
2
(用
a
b
来表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点E、F分别是AC、AB的中点,其中△AFE的面积为2,则△EFG的面积为
2
3
2
3

查看答案和解析>>

同步练习册答案