分析 根据已知条件可证△ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FN∥AB.证明△ADF∽△CDA,根据相似三角形的性质得出AD2=DF•DC.
解答 解:①∵CD⊥AB,∴∠ADC=∠CDB=90°,
∵CD2=AD•DB,
∴$\frac{CD}{AD}=\frac{DB}{CD}$,
∴△ADC∽△CDB,
∴∠ACD=∠B,
∴∠ACB=90°,故本选项正确;
②∵AE平分∠CAB
∴∠CAE=∠DAF,
∴△CAE∽△DAF,
∴∠AFD=∠AEC,
∴∠CFE=∠AEC,
∴CF=CE,
∵CN=BE,∴CE=BN,
∴CF=BN,故本选项正确;
③∵∠EAB=∠B,
∴EA=EB,
∵FA=FC=BN,∠FEN=∠AEB,
∴△EFN∽△EAB,
∴∠EFN=∠EAB,
∴FN∥AB,故本选项正确;
④易证△ADF∽△CDA,
∴AD2=DF•DC,故本选项正确;
故答案为:①②③④.
点评 本题综合考查了相似三角形的判定和性质,平行线的判定,等腰三角形的性质等知识点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| x | … | 1 | 2 | 3 | 4 | … |
| y | … | -4 | 2 | 4 | 2 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com