精英家教网 > 初中数学 > 题目详情

如图,AD=AE,∠ADB=∠AEC,BD=CE,则△ABD≌△________,△ABE≌△________.

ACE    ACD
分析:利用“边角边”证明△ABD和△ACE全等;
先根据等角的补角相等求出∠AEB=∠ADC,再求出BE=CD,然后利用“边角边”证明△ABE和△ACD全等.
解答:在△ABD和△ACE中,
∴△ABD≌△ACE(SAS);
∵∠ADB=∠AEC,
∴180°-∠ADB=180°-∠AEC,
即∠AEB=∠ADC,
∵BD=CE,
∴BD+DE=CE+DE,
即BE=CD,
在△ABE和△ACD中,
∴△ABE≌△ACD(SAS).
故答案为:ACE;ACD.
点评:本题考查了全等三角形的判定,主要利用了“边角边”证明两三角形全等,是基础题,结合图形确定出全等的三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△
ACE
,理由是
SAS
,△ABE≌△
ACD
,理由是
ASA(或SAS)

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,AD=AE,∠ADC=∠AEB,BE与CD相交于O点.
(1)在不添加辅助线的情况下,请写出由已知条件可得出得结论.(例如,可得出△ABE≌△ACD,∠DOB=∠EOC,∠DOE=∠BOC等)你写的结论中不得有上述所举之例,只要写出四个即可.
△DOB≌△EOC
△BCD≌△CBE
∠ABE=∠ACD
BD=EC

(2)就你写出的其中一个结论,说明其成立的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

39、已知:如图,AD=AE,AB=AC,BD、CE相交于O.
求证:OD=OE.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,AD=AE,AB=AC,DC与BE交于O点.
(1)试说明∠B=∠C;
(2)若∠B=40°,∠BOC=130°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD=AE,AB=AC,∠A=60°,∠C=25°,则∠DOB=
80
80
度.

查看答案和解析>>

同步练习册答案