精英家教网 > 初中数学 > 题目详情
21、已知:如图,AD=AE,∠ADC=∠AEB,BE与CD相交于O点.
(1)在不添加辅助线的情况下,请写出由已知条件可得出得结论.(例如,可得出△ABE≌△ACD,∠DOB=∠EOC,∠DOE=∠BOC等)你写的结论中不得有上述所举之例,只要写出四个即可.
△DOB≌△EOC
△BCD≌△CBE
∠ABE=∠ACD
BD=EC

(2)就你写出的其中一个结论,说明其成立的理由.
分析:本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.
解答:解:①△DOB≌△EOC ②△BCD≌△CBE ③∠ABE=∠ACD ④BD=EC.
证明:∵AD=AE,∠ADC=∠AEB,∠A=∠A,
∴△ADC≌△AEB,
∴AB=AC,即BD=EC,∠B=∠C,
又∠DOB=∠EOC(对顶角相等),
∴△DOB≌△EOC(AAS).
点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:如图,AD∥BC,ED∥BF,且AF=CE.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

同步练习册答案