试题分析:(1)先由直线
求出A、B两点的横坐标,即OA、OB的长,从而可求出△AOB的面积;
(2)过C点作CD⊥x轴,垂足为D,构造Rt△ADC.易证△OAB≌△DCA,从而可求出CD=4,OD=7,所以C点坐标为(7,4);
(3)①由(2)可知,PD=7-x,在Rt△OPB中,
,Rt△PCD中,
②存在这样的P点.P(3,0).
试题解析:(1)由直线
,令y=0,得OA=x=4,令x=0,得OB=y=3,∴S
△AOB=
×4×3=6;
(2)过C点作CD⊥x轴,垂足为D,
∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
又∵AB=AC,∠AOB=∠CDA=90°,
∴△OAB≌△DCA,
∴CD=OA=4,AD=OB=3,则OD=4+3=7,
∴C(7,4);
(3)①由(2)可知,PD=7-x,
在Rt△OPB中,PB
2=OP
2+OB
2=x
2+9,
Rt△PCD中,PC
2=PD
2+CD
2=(7-x)
2+16=x
2-14x+65,
②存在这样的P点.
设B点关于 x轴对称的点为B′,则B′(0,-3),
连接CB′,设直线B′C解析式为y=kx+b,将B′、C两点坐标代入,得
解得
所以,直线B′C解析式为y=x-3,
令y=0,得P(3,0),此时|PC-PB|的值最大,