精英家教网 > 初中数学 > 题目详情
如图,已知直线与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面积;
(2)求点C坐标;
(3)点P是x轴上的一个动点,设P(x,0)
①请用x的代数式表示PB2、PC2
②是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;
如果存在,请求出点P的坐标.
(1)6;(2)(7,4);(3)①;②存在这样的P点,P(3,0).

试题分析:(1)先由直线求出A、B两点的横坐标,即OA、OB的长,从而可求出△AOB的面积;
(2)过C点作CD⊥x轴,垂足为D,构造Rt△ADC.易证△OAB≌△DCA,从而可求出CD=4,OD=7,所以C点坐标为(7,4);
(3)①由(2)可知,PD=7-x,在Rt△OPB中,,Rt△PCD中,
②存在这样的P点.P(3,0).
试题解析:(1)由直线,令y=0,得OA=x=4,令x=0,得OB=y=3,∴S△AOB=×4×3=6;
(2)过C点作CD⊥x轴,垂足为D,

∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
又∵AB=AC,∠AOB=∠CDA=90°,
∴△OAB≌△DCA,
∴CD=OA=4,AD=OB=3,则OD=4+3=7,
∴C(7,4);
(3)①由(2)可知,PD=7-x,
在Rt△OPB中,PB2=OP2+OB2=x2+9,
Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,
②存在这样的P点.
设B点关于 x轴对称的点为B′,则B′(0,-3),
连接CB′,设直线B′C解析式为y=kx+b,将B′、C两点坐标代入,得
解得
所以,直线B′C解析式为y=x-3,
令y=0,得P(3,0),此时|PC-PB|的值最大,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某工厂现有甲种原料360kg,乙种原料290kg,计划用它们生产A、B两种产品共50件,已知每生产一件A种产品,需要甲种原料9kg、乙种原料3kg,获利700元,生产一件B种产品,需要甲种原料4kg、乙种原料10kg,可获利1200元.
(1)利用这些原料,生产A、B两种产品,有哪几种不同的方案?
(2)设生产两种产品总利润为y(元),其中生产A中产品x(件),试写出y与x之间的函数解析式.
(3)利用函数性质说明,采用(1)中哪种生产方案所获总利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为(  )

A.             B.            C.              D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,已知点A(-3,4)、B(5,4),在x轴上找一点P,使PA+PB最小,则P点坐标为(     ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果正比例函数的图象经过点(-2,1),那么k 的值等于             

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为(  )

A.8:30   B.8:35    C.8:40    D.8:45

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数y=(2m-3)x+(3m+1)的图像经过第二、三、四象限,则m的取值范围是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。山高h与游客爬山所用时间t之间的函数关系大致图形表示是(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=     ,b=     

查看答案和解析>>

同步练习册答案