精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,反比例函数y=
4
x
的图象与抛物线y=x2+(9m+4)x+m-精英家教网1交于点A(3,n).
(1)求n的值及抛物线的解析式;
(2)过点A作直线BC,交x轴于点B,交反比例函数y=
4
x
(x>0)的图象于点C,且AC=2AB,求B、C两点的坐标;
(3)在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.
分析:(1)由点A(3,n)在反比例函数y=
4
x
的图象上,即可求得n的值,又由点A在抛物线y=x2+(9m+4)x+m-1上,利用待定系数法即可求得;
(2)首先由AD∥CE,证得△ABD∽△CBE,根据相似三角形的对应边成比例,即可求得AD的长,则可求得CE的长,易得点C的坐标,即可求得点B的坐标;
(3)首先求得:抛物线y=x2-2x-
5
3
的对称轴,证得:△PCF∽△BCE,再分别从当点P在第一象限内时,设P(1,a)(a>0)与当点P在第四象限内时,设P(1,a)(a<0)利用相似三角形的对应边成比例求解即可.
解答:精英家教网解:(1)∵点A(3,n)在反比例函数y=
4
x
的图象上,
∴n=
4
3

∴A(3,
4
3
).
∵点A(3,
4
3
)在抛物线y=x2+(9m+4)x+m-1上,
4
3
=9+(9m+4)×3+m-1,
∴m=-
2
3

∴抛物线的解析式为y=x2-2x-
5
3


(2)分别过点A、C作x轴的垂线,垂足分别为点D、E,
∴AD∥CE.
∴△ABD∽△CBE.
AD
CE
=
AB
CB

∵AC=2AB,
AB
CB
=
1
3

由题意,得AD=
4
3

4
3
CE
=
1
3

∴CE=4.
即点C的纵坐标为4.
当y=4时,x=1,
∴C(1,4),
BD
BE
=
AB
CB
=
1
3
,DE=2,
BD
BD+2
=
1
3

∴BD=1.
∴B(4,0);

(3)∵抛物线y=x2-2x-
5
3
的对称轴是x=1,
∴P在直线CE上.
过点P作PF⊥BC于F.
由题意,得PF=PE.
∵∠PCF=∠BCE,∠CFP=∠CEB=90°,
∴△PCF∽△BCE.
PF
BE
=
PC
BC

由题意,得BE=3,BC=5.
①当点P在第一象限内时,设P(1,a)(a>0).
则有
a
3
=
4-a
5
.解得a=
3
2

∴点P的坐标为(1,
3
2
).
②当点P在第四象限内时,设P(1,a)(a<0)
则有
-a
3
=
4-a
5
.解得a=-6.
∴点P的坐标为(1,-6).
∴点P的坐标为(1,
3
2
)或(1,-6).
点评:此题考查了待定系数法求二次函数的解析式以及相似三角形的判定与性质等知识.此题综合性很强,难度较大,注意数形结合思想与分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案