精英家教网 > 初中数学 > 题目详情
观察算式:
13=1
13+23=9
13+23+33=36
13+33+33+43=100

按规律填空:
13+23+33+43+…+103=
 

13+23+33+…+n3=
 
.(n为正整数)
分析:1+2+3+4+…+n=
n(n+1)
2
.如果一列数具有如下特点:从第2项起,每一项与它前一项的差都相等,那么这一列数中有限项的和为:S=
(首项+末项)×项数
2
解答:解:将这些算式进行整理.13=1,13+23=9=32=(1+2)3,13+23+33=36=62
=(1+2+3)2,13+23+33+43=100=102=(1+2+3+4)2
由以上规律可得
13+23+33+43+…+103=(1+2+3+4+…+10)2=[
(1+10)×10
2
]2=552
13+23+33+…+n3=(1+2+3+…+n)2=[
n(n+1)
2
]2
点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
 

(2)若n为正整数,化简:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并写出求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按规律填空 
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
5
6

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

若n为正整数,试求:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
的值,并写出求值过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列算式:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
;…
(1)通过观察,你得到什么结论?用含n(n为正整数)的等式表示:
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1

(2)利用你得出的结论,计算:
1
(a-1)(a-2)
+
1
(a-2)(a-3)
+
1
(a-3)(a-4)
+
1
(a-4)(a-5)

查看答案和解析>>

科目:初中数学 来源: 题型:

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3
 
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

如果n为正整数,那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1

由此拓展写出具体过程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=

查看答案和解析>>

科目:初中数学 来源: 题型:

观察算式:
1
1×2
=1-
1
2
=
1
2
1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按规律填空
 
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

如果n为正整数,那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1

由此拓展写出具体过程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×100
=
99
200
99
200

查看答案和解析>>

同步练习册答案