精英家教网 > 初中数学 > 题目详情

在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.
(1)如图1,当点P与点O重合时,OE与OF的数量关系为________;
(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为________;位置关系为________.

(1)解:OE=OF(相等);(1分)

(2)解:OE=OF,OE⊥OF;(3分)
证明:连接BO,
∵在正方形ABCD中,O为AC中点,
∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)
∵PF⊥BC,∠BCO=45°,
∴∠FPC=45°,PF=FC.
∵正方形ABCD,∠ABC=90°,
∵PF⊥BC,PE⊥AB,
∴∠PEB=∠PFB=90°.
∴四边形PEBF是矩形,
∴BE=PF.(5分)
∴BE=FC.
∴△OBE≌△OCF,
∴OE=OF,∠BOE=∠COF,(7分)
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°,
∴∠EOF=90°,
∴OE⊥OF.(8分)

(3)OE=OF(相等),OE⊥OF(垂直).(10分)
分析:(1)根据利用正方形的性质和直角三角形的性质即可判定四边形BEOF为正方形,从而得到结论;
(2)当移动到点P的位置时,可以通过证明四边形BEPF为矩形来得到两条线段的数量关系;
(3)继续变化,有相同的关系,其证明方法也类似.
点评:本题考查了正方形的性质,解题的关键是抓住动点问题,化动为静,还要大胆的猜想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.
(1)如图1,当点P与点O重合时,OE与OF的数量关系为
OE=OF

(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为
OE=OF
;位置关系为
OE⊥OF

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图1中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图2,图3,图4,图5中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图2,图3,图4,图5中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图2所得结论;
(3)证明图4所得结论;
(4)(附加题)在图6中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=.图4与图6中的等式有何关系.

查看答案和解析>>

科目:初中数学 来源:2010年河北省石家庄市中考数学二模试卷(解析版) 题型:解答题

在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.
(1)如图1,当点P与点O重合时,OE与OF的数量关系为______;
(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为______;位置关系为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图(2)),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图(3)的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图(3)至图(6)中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。

(1)将图(3)中△ABF沿BD向右平移到图(4)的位置,使点B与点F重合,请你求出平移的距离;

(2)将图(3)中△ABF绕点F顺时针方向旋转30°到图(5)的位置,A1F交DE于点G,请你求出线段FG的长度; 

(3)将图(3)中的△ABF沿直线AF翻折到图(6)的位置,AB1交DE丁点H,请证明:AH=DH。

查看答案和解析>>

同步练习册答案