【题目】探究(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A的关系?直接写出结论,不必说明理由.
思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
应用(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.
【答案】(1)∠1+∠2=2∠A;(2)∠BIC=122.5°;(3)∠BHC=180°﹣(∠1+∠2),理由见解析.
【解析】试题分析:(1)根据翻折变换的性质以及三角形内角和定理以及平角的定义求出即可;
(2)根据三角形角平分线的性质得出∠IBC+∠ICB=90°-∠A,得出∠BIC的度数即可;
(3)根据翻折变换的性质以及垂线的性质得出,∠AFH+∠AGH=90°+90°=180°,进而求出∠A=(∠1+∠2),即可得出答案
试题解析:(1)∠1+∠2=2∠A,
理由:根据翻折的性质,∠ADE= (180°∠1),∠AED= (180°∠2),
∵∠A+∠ADE+∠AED=180°,
∴∠A+ (180°∠1)+ (180°∠2)=180°,
整理得2∠A=∠1+∠2;
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,
∴∠A=65°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(90°﹣∠A)=90°+×65°=122.5°;
(3)∠BHC=180°﹣(∠1+∠2).
理由:∵BF⊥AC,CG⊥AB,
∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,
∴∠BHC=∠FHG=180°﹣∠A,
由(1)知∠1+∠2=2∠A,
∴∠A=(∠1+∠2),
∴∠BHC=180°﹣(∠1+∠
科目:初中数学 来源: 题型:
【题目】列方程解应用题:某礼品制造工厂接受一批玩具熊的订货任务,按计划天数生产,如果每天生产20个玩具熊,则比订货任务少100个;如果每天生产23个玩具熊,则可以超过订货任务20个.请求出该厂计划几天完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过∠AOB的平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,过点E作直线分别交射线CD,OB于点M,N,探究线段OD,ON,DM之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.
(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;
(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园有一个边长为4米的正三角形花坛,三角形的顶点A、B、C上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限.
(1)按圆形设计,利用图1画出你所设计的圆形花坛示意图;
(2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图;
(3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句中正确的是( )
A.两点之间直线的长度叫做这两点间的距离
B.两点之间的线段叫做这两点之间的距离
C.两点之间线的长度叫做这两点间的距离
D.两点之间线段的长度叫做这两点间的距离
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )
A. 40% B. 33.4% C. 33.3% D. 30
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com