精英家教网 > 初中数学 > 题目详情

如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点直线y=-x+3与y轴交于B点,与该抛物线交于A,D两点,已知点D横坐标为-1.(1)求这条抛物线的解析式;
(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;
(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.

(1)解:y=-x+3,
当x=0时,y=3,
∴B(0,3),
把x=-1代入y=-x+3得:y=4,
∴D(-1,4),
当y=0时,0=-x+3,
∴x=3,
∴A(3,0),
∵抛物线过A(3,0),O(0,0),
把D(-1,4)代入y=ax2+bx+c=a(x-0)(x-3)得:4=a(-1-0)(-1-3),
∴a=1,
∴y=(x-0)(x-3),
即抛物线的解析式是y=x2-3x.

(2)解:设H(x,0),
则P(x,-x+3),Q(x,x2-3x),
∴PH=-x+3,QH=3x-x2
∵x轴把△POQ分成两部分的面积之比为1:2,
==2,
==2,
解得:x1=2,x2=3(舍去),x3=3(舍去),x4=
∴H点的坐标是(2,0)或(,0).

(3)解:分为三种情况:
①若∠BAC=90°,设C(x,x2-3x),
∵△AOB是等腰直角三角形,
∴∠BAO=45°,
∴∠OAC=45°,
∴tan∠OAC=1,
=1,
解得:x1=1,x2=3(舍去),
∴C(1,-2);
②若∠ABC=90°时,
∵∠OBA=45°,
∴∠OBC=45°,
设直线BC交于x轴于E,其解析式是y=kx+3,
∴OE=OB=3,
∴E(-3,0),
代入得:0=-3k+3,
∴k=1,
∴y=k+3,
解方程组得:
∴C(2+,5-)或(2-,5-);
③若∠ACB=90°时,设C(n,k),
AC2+BC2=AB2
即(n-3)2+k2+n2+(k-3)2=18,
n2-3n+k2-3k=0,
∵k=n2-3n,
代入求出k1=0,k2=2,
∴n2-3n=0,n2-3n=2,
解得:n1=0,n2=3(舍去),n3=,n4=
∴C(0,0)或(,2)或(,2),
综合上述:存在,点C的坐标是(1,-2)或(2+,5+)或(2-,5-)或(0,0)或(,2)或(,2).
分析:(1)求出B、D、A的坐标,把D的坐标代入y=a(x-0)(x-3)求出a即可;
(2)设H(x,0),得出P(x,-x+3),Q(x,x2-3x),求出PH和QH,根据三角形的面积得出==2,代入求出即可;
(3)分为三种情况:①若∠BAC=90°,设C(x,x2-3x),tan∠OAC=1,代入求出即可;②若∠ABC=90°时,得出求出直线BC的解析式,和抛物线的解析式得出方程组,求出方程组的解即可;③若∠ACB=90°时,设C(n,k),根据勾股定理得出AC2+BC2=AB2,代入得到(n-3)2+k2+n2+(k-3)2=18,求出即可.
点评:本题考查了三角形的面积,勾股定理,用待定系数法求出二次函数的解析式,等腰三角形的性质和判定等知识点的应用,主要考查学生运用这些性质进行计算的能力,本题难度偏大,对学生有较高的要求,分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数的图象是经过点A(1,0),B(3,0),E(0,6)三点的一条抛物线.
(1)求这条抛物线的解析式;
(2)如图,设抛物线的顶点为C,对称轴交x轴于点D,在y轴正半轴上有一点P,且以A、O、P为顶点的三角形与△ACD相似,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,矩形ABCD,点C与坐标原点O重合,点A在x轴上,点B坐标为(3,
3
),求经过A、B、C三点抛物线的解析式;
(2)如图2,抛物线E:y=-
1
2
x2+bx+c
经过坐标原点O,其顶点在y轴左侧,以O为顶点作矩形OADC,A、C为抛物线E上两点,若AC∥x轴,AD=2CD,则抛物线的解析式是
 

(3)如图3,点A、B、C分别为抛物线F:y=ax2+bx+c(a<0)上的点,点B在对称轴右侧,点D在抛物线外,顺次连接A、B、C、D四点,所成四边形为矩形,且AC∥x轴,AD=2CD,求矩形ABCD的周长(用含a的式子表示).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将抛物线y=-
1
2
x2
平移后经过原点O和点A(6,0),平移后的抛物线的顶点为点B,对称轴与抛物线y=-
1
2
x2
相交于点C,则图中直线BC与两条抛物线围成的阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案