精英家教网 > 初中数学 > 题目详情
24、已知AB∥CD,E是直线AC上的一个动点(不与点C重合),连接ED.
(1)如图1,当点E在线段AC的延长线上时,证明∠CED+∠CDE+∠A=180°;

(2)如图2,当点E在线段AC上时,(1)中的结论是否成立?若成立.请证明;若不成立,请直接写出这三个角之间存在的等量关系.
分析:(1)因为AB∥CD,∠A与∠ECD是同位角,则这两个角相等,可以根据三角形的内角和定理来证明.
(2)因为AB∥CD,∠A与∠ECD是同旁内角,则这两个角互补,即∠A+∠ECD=180°,然后利用三角形的内角和定理来证明这三个角的关系.
解答:证明:(1)∵AB∥CD,∴∠A=∠ECD.
∵在△ECD中,∠CED+∠ECD+∠DCE=180°,
∴∠A+∠CED+∠CDE=180°.

(2)∵AB∥CD,
∴∠A+∠ECD=180°,
在△ECD中∠CED+∠CDE+∠C=180°,
∴∠CED+∠CDE+∠A=180°不成立.
等量关系为:∠A=∠CED+∠CDE.
点评:本题比较简单,考查的是平行线的性质及三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,已知AB∥CD,OM是∠BOF的平分线,∠2=70°,则∠1的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜昌)如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠BEC=100°,则∠D的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,O是∠ACD与∠BAC的平分线的交点,OE⊥AC,且OE=2cm,则AB与CD间的距离等于
4
4
cm.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北宜昌卷)数学(解析版) 题型:选择题

如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠BEC=100°,则∠D的度数是

A.100°       B.80°       C.60°       D.50°

 

查看答案和解析>>

同步练习册答案