精英家教网 > 初中数学 > 题目详情
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.
(1)由题意得:
y=x•
40-x
2
=-
1
2
x2+20x(3分)
自变量x的取值范围是0<x≤25(4分)

(2)y=-
1
2
x2+20x
=-
1
2
(x-20)2+200(6分)
∵20<25,
∴当x=20时,y有最大值200平方米
即当x=20时,满足条件的绿化带面积最大.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的表达式是y=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=
1
2
x+
3
2
与直线y=x交于点A,点B在直线y=
1
2
x+
3
2
上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.
(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FEx轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6999•重庆)如的,二次函数y=96+29+c的的象与9轴只有一个公共点P,与y轴的交点为Q.过点Q的直线y=69+m与9轴交于点A,与这个二次函数的的象交于另一点2,若S△2PQ=3S△APQ,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=-
1
2
x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=-
1
2
x2+bx+c交于第四象限的F点.
(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒
13
2
个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交与A,B两点,与y轴交与点C,已知点A的坐标为(-2,0),sin∠ABC=
2
5
5
,点D是抛物线的顶点,直线DC交x轴于点E.
(1)求抛物线的解析式及其顶点D的坐标;
(2)在直线CD上是否存在一点Q,使以B,C,Q为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由;
(3)点P是直线y=2x-4上一点,过点P作直线PM垂直于直线CD,垂足为M,若∠MPO=75°,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(
5
2
13
4
),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕y1所在直线的解析式;
(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E'.
①求折痕AD所在直线的解析式;
②再作E'FAB,交AD于点F.若抛物线y=-
1
12
x2+h过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数.
(3)如图3,一般地,在OC、OA上选取适当的点D'、G',使纸片沿D'G'翻折后,点O落在BC边上,记为E''.请你猜想:折痕D'G'所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想.

查看答案和解析>>

同步练习册答案