精英家教网 > 初中数学 > 题目详情
如图,已知线段AB=8cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为(  )
分析:由已知条件可知,MN=MC+CN,又因为M是AC的中点,N是BC的中点,则MC+CN=AM+BN=
1
2
AB.
解答:解:∵M是AC的中点,N是BC的中点,
∴MC=AM=
1
2
AC,CN=BN=
1
2
BC,
∴MN=MC+CN=
1
2
AC+
1
2
BC=
1
2
(AC+BC)=
1
2
AB=4cm.
故选B.
点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图:已知线段AB,点C在AB的延长线上,AC=
5
3
BC,D在AB的反向延长线上,BD=
3
5
DC.精英家教网
(1)在图上画出点C和点D的位置;
(2)设线段AB长为x,则BC=
 
;AD=
 
;(用含x的代数式表示)
(3)若AB=12cm,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为(  )
精英家教网
A、6cmB、5cmC、4cmD、3cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB,按下列要求作图:分别以A、B为圆心,大于
12
AB
的相同长度为半径画弧,设两段弧在AB上方的交点为M,连接AM,延长AM到C,使得AM=MC,连接BC(只要保留作图痕迹).根据所作图形,求证:∠ABC=90°.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB和CD相交于点O,线段OA=OD,OC=OB,求证:△OAC≌△ODB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知线段AB,延长AB至C,使得BC=
1
2
AB,若D是BC的中点,CD=2cm,则AC的长等于(  )
A、4cmB、8cm
C、10cmD、12cm

查看答案和解析>>

同步练习册答案