分析 根据题意可以列出相应的函数解析式,根据三角形两边之和大于第三边和等腰三角形的性质可以确定x的取值范围,从而本题得以解决.
解答 解:由题意可得,
y=$\frac{50-x}{2}$,
∵$\left\{\begin{array}{l}{2x>y}\\{2x<50}\\{x+2y=50}\end{array}\right.$
∴12.5<x<25,
即y关于x的函数解析式是y=$\frac{50-x}{2}$,自变量x的取值范围是12.5<x<25.
点评 本题考查函数关系式、函数的自变量的取值范围、三角形三边的关系,等腰三角形的性质,解题的关键是明确题意,列出相应的函数关系式,可以根据三角形三边关系和等腰三角形的性质确定自变量的取值范围.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m=n | B. | m>n | C. | m<n | D. | 无法判断 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com