精英家教网 > 初中数学 > 题目详情
8.如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.
(1)判断四边形ACGD的形状,并说明理由.
(2)求证:BE=CD,BE⊥CD.

分析 (1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;
(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.

解答 (1)解:∵△ABC是等腰直角三角形,∠ACB=90°,
∴AB=$\sqrt{2}$BC,
∵△ABD和△ACE均为等腰直角三角形,
∴BD=$\sqrt{2}AB$=BC$\sqrt{2}×\sqrt{2}×BC$=2BC,
∵G为BD的中点,
∴BG=$\frac{1}{2}$BD=BC,
∴△CBG为等腰直角三角形,
∴∠CGB=45°,
∵∠ADB=45°,
AD∥CG,
∵∠ABD=45°,∠ABC=45°
∴∠CBD=90°,
∵∠ACB=90°,
∴∠CBD+∠ACB=180°,
∴AC∥BD,
∴四边形ACGD为平行四边形;

(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,
∠CAD=∠DAB+∠BAC=90°+45°=135°,
∴∠EAB=∠CAD,
在△DAC与△BAE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠CAD=∠EAB}\\{AC=AE}\end{array}\right.$,
∴△DAC≌△BAE,
∴BE=CD;
∵∠EAC=∠BCA=90°,EA=AC=BC,
∴四边形ABCE为平行四边形,
∴CE=AB=AD,
在△BCE与△CAD中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCE=∠CAD=135°}\\{EC=DA}\end{array}\right.$,
∴△BCE≌△CAD,
∴∠CBE=∠ACD,
∵∠ACD+∠BCD=90°,
∴∠CBE+∠BCD=90°,
∴∠CFB=90°,
即BE⊥CD.

点评 本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.计算:$\sqrt{4}$-|-2|+($\frac{1}{2}$)-1-20150

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有69幅.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是(  )
A.27B.35C.44D.54

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在$\widehat{AB}$上,CD⊥OA,垂足为D,当△OCD的面积最大时,$\widehat{AC}$的长为$\frac{1}{4}πr$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若关于x的方程$\frac{2}{x-2}$+$\frac{x+m}{2-x}$=2的解为正数,则m的取值范围是(  )
A.m<6B.m>6C.m<6且m≠0D.m>6且m≠8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,直线y=$\frac{1}{2}$x+2交x轴、y轴于A、B两点,点C与点A关于y轴对称,点D是线段AB上一个动点,ED=EC,且sin∠EDC=$\frac{\sqrt{5}}{5}$.
(1)求证:△DEC∽△ABC;
(2)求证:BE∥AC;
(3)若D在直线AB上运动时,是否存在这样的点D使△DEC的面积最小?如果存在请求出D点的坐标和△DEC面积的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知扇形AOB中,OA=10cm,∠AOB=36°.
(1)求扇形AOB的面积;
(2)将扇形AOB绕B点顺时针方向旋转,得一新扇形A′O′B,其中A点在O′B上,如图所示,求O点旋转至O′点所经过的路径的长.

查看答案和解析>>

同步练习册答案