精英家教网 > 初中数学 > 题目详情
如图,已知:在Rt△ABC中,∠C=90°,E为AB的中点,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度数.
分析:由∠CAD:∠DAB=1﹕2,可设∠CAD=x°,∠DAB=2x°,由E为AB的中点,且DE⊥AB于E,根据线段垂直平分线的性质,可得∠B=∠DAB=2x°,继而可得5x=90,解此方程即可求得答案.
解答:解:由题意,设∠CAD=x°,∠DAB=2x°,
∵E为AB的中点,且DE⊥AB,
∴DE为AB的中垂线,
∴AD=DB,
∴∠B=∠DAB=2x°,
∴∠B+∠CAB=2x°+3x°=5x°,
∵在Rt△ABC中,∠C=90°,
∴∠B+∠CAB=90°,
∴5x=90,
∴x=18,
∴∠B=2x°=36°.
点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.此题难度适中,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D为AC上一点(不与A、C不精英家教网重合),过D作DQ⊥AC(DQ与AB在AC的同侧);点P从D点出发,在射线DQ上运动,连接PA、PC.
(1)当PA=PC时,求出AD的长;
(2)当△PAC构成等腰直角三角形时,求出AD、DP的长;
(3)当△PAC构成等边三角形时,求出AD、DP的长;
(4)在运动变化过程中,△CAP与△ABC能否相似?若△CAP与△ABC相似,求出此时AD与DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠ACB=90°,sinB=
35
,D是BC上一点,DE⊥AB,垂足为E,CD=DE,AC+CD=9.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,已知:在Rt△ABC中,∠ACB=90°,AC=4,BC=3,AM=AC,BN=BC.
求:(1)AB的长;(2)MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D.
求证:AD=
14
AB.

查看答案和解析>>

同步练习册答案