精英家教网 > 初中数学 > 题目详情
10.在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,
①BC与CF的位置关系是:BC⊥CF;
②BC、CD、CF之间的数量关系为:BC=CF+CD(将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

分析 (1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;
②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;
(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.

解答 解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,
∵$\left\{\begin{array}{l}{AD=AF}\\{∠BAD=∠CAF}\\{AB=AC}\end{array}\right.$,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即BC⊥CF;
故答案为:BC⊥CF;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
故答案为:BC=CF+CD;

(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.
∵正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,
∵$\left\{\begin{array}{l}{AD=AF}\\{∠BAD=∠CAF}\\{AB=AC}\end{array}\right.$,
∴△DAB≌△FAC,
∴∠ABD=∠ACF,
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°.
∴∠ABD=180°-45°=135°,
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BC.
∵CD=DB+BC,DB=CF,
∴CD=CF+BC.

点评 本题考查了全等三角形的判定和性质,正方形的性质,等腰直角三角形的判定和性质,矩形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.一个等腰三角形的三边长都是整数,且周长为13,求这个等腰三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某地生产椪柑,春节期间,一外地运销客户安排15辆汽车装运A,B,C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆都不少于3辆.
(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;
椪柑品种ABC
每辆汽车运载量(吨)1086
(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,点E是正方形ABCD边BC延长线上一点,且CE=AC,则∠AFC的度数为112.5°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.命题“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”是真命题(选填“真”或“假”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列图形中,不属于中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.因式分解多项式2a2b3+6ab2,应提取的公因式是2ab2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若EF=DB,求证:四边形DEBF为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠AFE.
求证:AD平分∠BAC.

查看答案和解析>>

同步练习册答案