分析 (1)利用平方差公式、二次根式的性质化简计算即可;
(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.
解答 解:(1)原式=($\sqrt{3}$)2-12+$\sqrt{2}$+$\frac{1}{2}$×3$\sqrt{2}$-3×$\frac{2\sqrt{2}}{3}$
=3-1+$\sqrt{2}$+$\frac{3\sqrt{2}}{2}$-2$\sqrt{2}$
=2+$\frac{1}{2}\sqrt{2}$;
(2)$\left\{\begin{array}{l}{5x-1<3(x+1)①}\\{\frac{2x-1}{3}-\frac{5x+1}{2}≤1②}\end{array}\right.$,
解①得,x<2,![]()
解②得,x≥-1,
则不等式组的解集为:-1≤x<2.
点评 本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{2(x+\frac{y}{2})=99}\\{\frac{x}{2}+y=66}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{2x+y=66}\\{\frac{x}{2}+y=99}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{\frac{x}{2}+y=66}\\{\frac{x}{2}+2y=99}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+2y=99}\\{2x+y=66}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com