【题目】如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.
(1)求抛物线的解析式;
(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;
(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;
(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.
【答案】
(1)
解:将点B(1,4),E(3,0)的坐标代入抛物线的解析式得: ,
解得: ,
抛物线的解析式为y=﹣2x2+6x
(2)
解:如图1所示;
∵BD⊥DE,
∴∠BDE=90°.
∴∠BDC+∠EDO=90°.
又∵∠ODE+∠DEO=90°,
∴∠BDC=∠DE0.
在△BDC和△DOE中, ,
∴△BDC≌△DEO.
∴OD=AO=1.
∴D(0,1).
(3)
解:如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.
∵x=﹣ = ,
∴点B′的坐标为(2,4).
∵点B与点B′关于x= 对称,
∴MB=B′M.
∴DM+MB=DM+MB′.
∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).
∵由两点间的距离公式可知:BD= = ,DB′= = ,
∴△BDM的最小值= + .
设直线B′D的解析式为y=kx+b.
将点D、B′的坐标代入得: ,
解得:k= ,b=1.
∴直线DB′的解析式为y= x+1.
将x= 代入得:y= .
∴M( , )
(4)
如图3所示:过点F作FG⊥x轴,垂足为G.
设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.
∵S梯形DOGF= (OD+FG)OG= (﹣2a2+6a+1)×a=﹣a3+3a2+ a,S△ODA= ODOA= ×1×1= ,S△AGF= AGFG=﹣a3+4a2﹣3a,
∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+ a﹣ .
∴当a= 时,S△FDA的最大值为 .
∴点P的坐标为( , ).
【解析】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式,得到关于a、b的方程组,求得a、b的值,从而可得到抛物线的解析式;(2)依据同角的余角相等证明∠BDC=∠DE0,然后再依据AAS证明△BDC≌△DEO,从而得到OD=AO=1,于是可求得点D的坐标;(3)作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.先求得抛物线的对称轴方程,从而得到点B′的坐标,由轴对称的性质可知当点D、M、B′在一条直线上时,△BMD的周长有最小值,依据两点间的距离公式求得BD和B′D的长度,从而得到三角形的周长最小值,然后依据待定系数法求得D、B′的解析式,然后将点M的横坐标代入可求得点M的纵坐标;(4)过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.然后依据S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF的三角形的面积与a的函数关系式,然后依据二次函数的性质求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式、全等三角形的性质和判定、轴对称的性质、二次函数的图象和性质得到△FDA的面积与a的函数关系式是解题的关键.
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.
(1)求证:∠D=∠F;
(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知不等式组
(1)求不等式组的解集,并写出它的所有整数解;
(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中信息,解决下列问题:
(1)求此次调查中接受调查的人数.
(2)求此次调查中结果为非常满意的人数.
(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)
(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?
(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?
(3)若敌舰A沿最短距离的路线以20 海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数 的图象如图所示,关于该函数,下列结论正确的是(填序号). ①函数图象是轴对称图形;②函数图象是中心对称图形;③当x>0时,函数有最小值;④点(1,4)在函数图象上;⑤当x<1或x>3时,y>4.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com