解:(1)∵二次函数y
1=ax
2+3x+c的图象经过原点及点A(1,2),
∴将(0,0),代入得出:
c=0,
将(1,2)代入得出:
a+3=2,
解得:a=-1,
故二次函数解析式为:y
1=-x
2+3x,
∵图象与x轴相交于另一点B,
∴0=-x
2+3x,
解得:x=0或3,
则B(3,0);
(2)①由已知可得C(6,0)
如图:过A点作AH⊥x轴于H点,
∵DP∥AH,
∴△OPD∽△OHA,
∴
=
,
即
=
,
∴PD=2a,
∵正方形PDEF,
∴E(3a,2a),
∵E(3a,2a)在二次函数y
1=-x
2+3x的图象上,
∴a=
;
即OP=
.
②如图1:
当点F、点N重合时,有OF+CN=6,
∵直线AO过点(1,2),
故直线解析式为:y=2x,
当OP=t,
则AP=2t,
∵直线AC过点(1,2),(6,0),
代入y=ax+b,
,
解得:
,
故直线AC的解析式为:y=-
x+
,
∵当OP=t,QC=2t,
∴QO=6-2t,
∴GQ=-
(6-2t)+
=
t,
即NQ=
t,
∴OP+PN+NQ+QC=6,
则有3t+2t+
t=6,
解得:t=
;
如图2:
当点F、点Q重合时,有OF+CQ=6,则有3t+2t=6,
解得:t=
;
如图3:
当点P、点N重合时,有OP+CN=6,则有t+2t+
t=6,
解得:t=
,
如图4:
当点P、点Q重合时,有OP+CQ=6,则有t+2t=6,
解得:t=2.
故此刻t的值为:t
1=
,t
2=
,t
3=
,t
4=2.
分析:(1)利用二次函数y
1=ax
2+3x+c的图象经过原点及点A(1,2),分别代入求出a,c的值即可;
(2)①过A点作AH⊥x轴于H点,根据DP∥AH,得出△OPD∽△OHA,进而求出OP的长;
②分别利用当点F、点N重合时,当点F、点Q重合时,当点P、点N重合时,当点P、点Q重合时,求出t的值即可.
点评:此题主要考查了二次函数的综合应用以及相似三角形的判定与性质以及待定系数法求解析式,根据已知结合图象分类讨论得出t的值是解题关键.