精英家教网 > 初中数学 > 题目详情

如图,点E是△ABC的两条角平分线的交点.
(1)若∠A=80°,求∠BEC的度数;
(2)若∠BEC=130°,求∠A的度数;
(3)∠BEC能是直角吗?能是锐角吗?说明理由.

解:(1)∵∠A=80°(已知),
∴∠ABC+ACB=180°-80°=100°(三角形内角和定理),
∵BD,CF是∠ABC,∠ACB的平分线,
∴∠EBC+∠ECB=(∠ABC+ACB)=50°,
∴∠BEC=180°-50°=130°(三角形内角和定理);

(2)∵∠BEC=130°,
∴∠EBC+∠ECB=(∠ABC+ACB)=180°-130°=50°(三角形内角和定理),
∴∠ABC+∠ACB=2×50°=100°,
∴∠A=180°-100°=80°(三角形内角和定理);

(3)∠BEC不能是直角,也不能是锐角.理由:
∵∠BEC+(∠ABC+∠ACB)=180°,∠ABC+∠ACB<180°,
∴180°-∠BEC<90°,
∴∠BEC>90°.
故∠BEC既不能是直角,也不能是锐角.
分析:(1)根据三角形的内角和定理,先求出∠ABC+∠ACB的度数,利用角平分线的定义求出∠EBC+∠ECB的度数,再根据三角形内角和定理即可求出∠BEC的度数;
(2)与(1)的求解过程相反,根据三角形内角和定理先求出去∠ABC与∠ACB的度数的一半等于50°,再根据三角形的内角和定理即可求出∠A等于180°-2×50°;
(3)根据三角形的内角和定理∠ABC+∠ACB<180°,又∠BEC+(∠ABC+∠ACB)=180°,代入求解即可得到∠BEC大于90°.
点评:本题主要考查三角形的内角和定理和角平分线的定义,熟练掌握定理和概念是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点F是△ABC外接圆
BC
的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,点P是△ABC内的一点,有下列结论:①∠BPC>∠A;②∠BPC一定是钝角;③∠BPC=∠A+∠ABP+∠ACP.其中正确的结论共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若可以,指出F点位置,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花模拟)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5,GC=4,GB=3,将△ADG绕点D顺时针方向旋转180°得到△BDE,则△EBC的面积=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•天津)如图,点I是△ABC的内心,AI交BC边于D,交△ABC的外接圆于点E.
求证:(1)IE=BE;
      (2)IE是AE和DE的比例中项.

查看答案和解析>>

同步练习册答案