精英家教网 > 初中数学 > 题目详情

【题目】如图,是等腰直角三角形底边上的高,点的中点,延长,使,连接.

(1)求证:四边形是矩形;

(2)填空:

①若,则四边形的面积=_____

②若,则____时,四边形是正方形.

【答案】(1)证明见解析;(2)120;②.

【解析】

1)先证明,可得OE=OD,根据平行四边形的判定得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,可证四边形是矩形;

2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;②由正方形的判定方法可知,当CD=AD时,四边形是正方形,然后根据勾股定理列式求解即可.

(1)证明:∵

.

∵点的中点,

.

∴四边形是平行四边形.

是等腰三角形底边上的高,∴

∴四边形是矩形.

(2) ①解:∵AD是等腰△ABC底边BC上的高,BC=16AB=17

BD=CD=8AB=AC=17,∠ADC=90°,

由勾股定理得:AD===15

∴四边形ADCE的面积是AD×DC=15×8=120

②∵四边形是矩形,

∴当CD=AD时,四边形是正方形,

是等腰三角形底边上的高,

BD=CD

BD2+AD2=AB2

2BD2=100

BD=5

BC=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年, x为整数;后4年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年, x为整数假设每年的公租房全部出租完另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金单位:元与时间单位:年, x为整数满足一次函数关系如下表:

50

52

54

56

58

1

2

3

4

5

求出zx的函数关系式;

求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;

若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高,这样可解决住房的人数将比第6年减少,求a的值.

参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=m﹣2xm2+m-4 +2x﹣1是一个二次函数,求该二次函数的解析式.

【答案】y=﹣5x2+2x﹣1

【解析】试题分析:根据二次函数的定义得到m2+m﹣4=2m﹣2≠0,由此求得m的值,进而得到该二次函数的解析式.

试题解析:依题意得:m2+m﹣4=2m﹣2≠0即(m﹣2)(m+3=0m﹣2≠0

解得m=﹣3

则该二次函数的解析式为y=﹣5x2+2x﹣1

型】解答
束】
21

【题目】如图,在ABCD中,EF∥AB,FG∥ED,DE:DA=2:5,EF=4,求线段CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC为等边三角形,点D为直线BC上的一动点(D不与BC重合),以AD为边作等边△ADE(顶点ADE按逆时针方向排列),连接CE

(1)如图1,当点D在边BC上时,求证:①BDCE②ACCE+CD

(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论ACCE+CD是否成立?若不成立,请写出ACCECD之间存在的数量关系,并说明理由;

(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出ACCECD之间存在的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售甲、乙两种商品,现有如下信息:

请结合以上信息,解答下列问题:

(1)求甲、乙两种商品的进货单价;

(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.乙两人进行跑步训练,他们所跑的路程y(米)与时间x(秒)之间的关系如图所示,则下列说法错误的是( 

A. 离终点40米处,乙追上甲B. 甲比乙迟3秒到终点

C. 甲跑步的速度是5/D. 乙跑步的速度是/

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,下列结论:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.

(1)求篮球和足球的单价;

(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?

(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为abcd,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0101,序号为0×23+1×22+0×21+1×205,表示该生为5班学生.表示6班学生的识别图案是(  )

A.B.

C.D.

查看答案和解析>>

同步练习册答案