
(1)证明:连接OD、BD,
∵AB为圆O的直径,
∴∠BDA=90°,
∴∠BDC=180°-90°=90°,
∵E为BC的中点,
∴DE=

BC=BE,
∴∠EBD=∠EDB,
∵OD=OB,
∴∠OBD=∠ODB,
∵∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°,
∴∠ODE=90°,
∴DE是圆0的切线.
(2)解:∵sin∠C=

,
∴设AB=3x,AC=5x,
根据勾股定理得:(3x)
2+5
2=(5x)
2,
解得x=

.
AC=5×

=

.
由切割线定理可知:5
2=(

-AD)

,
解得,AD=

.
分析:(1)连接OD、BD,根据圆周角定理求出∠BDA=∠BDC=90°,根据直角三角形的性质和等腰三角形的性质求出∠ECD=∠EDC,∠EBD=∠EDB即可.
(2)根据BC=5,sin∠C=

,求出AC的长,再根据切割线定理求出AD的长即可.
点评:本题主要考查对勾股定理,等腰三角形的性质,直角三角形斜边上的中线的性质,切线的判定,圆周角定理,锐角三角函数等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.