精英家教网 > 初中数学 > 题目详情
在下图中,直线l所对应的函数关系式为y=-
1
5
x+5,l与y轴交于点C,O为坐标原点.
(1)请直接写出线段OC的长;
(2)已知图中A点在x轴的正半轴上,四边形OABC为矩形,边AB与直线l相交于点D,沿直线l把△CBD折叠,点B恰好落在AC上一点E处,并且EA=1.
①试求点D的坐标;
②若⊙P的圆心在线段CD上,且⊙P既与直线AC相切,又与直线DE相交,设圆心P的横坐标为m,试求m的取值范围.
(1)OC=5;

(2)①解法一:设D点的横坐标为m,由已知得,
它的纵坐标为:-
1
5
m+5
∴BC=OA=m,CA=CE+AE=m+1,
在Rt△OAC中,OA2+OC2=AC2,即m2+52=(m+1)2
解得m=12.
-
1
5
m+5=
13
5
,即D点的坐标为(12,
13
5
)


解法二:设D点的横坐标为m,由已知得,
它的纵坐标为:-
1
5
m+5,∴AD=-
1
5
m+5,DE=AB-AD=
1
5
m,
在Rt△ADE,EA2+ED2=AD2,即12+(
1
5
m)2=(-
1
5
m+5)2,解得m=12,
∴-
1
5
m+5=
13
5
,即D点的坐标为(12,
13
5
);

解法三:设D点的横坐标为m,由已知得,它的纵坐标为:-
1
5
m+5,
在Rt△OAC和Rt△ADE中,∠AOC=∠AED=90°,∠ACO+∠OAC=90°,∠OAC+∠EAD=90°,
∴∠ACO=∠EAD,
∴Rt△OACRt△ADE,
AC
AD
=
OC
AE
,即:
m+1
-
1
5
m+5
=
5
1
,解得m=12,
∴-
1
5
m+5=
13
5
,即D点的坐标为(12,
13
5
);

②由于△BCD和△CDE关于直线L对称,
所以⊙P与直线AC相切,与DE相交相当于与直线BC相切,与BD相交,
过点P作PM⊥OA,交OA于M,交BC于N;作PH⊥AB,交AB于H,
由题意知:只要PN>PH即可,
PN=MN-PM=
1
5
m
,PH=12-m,即:
1
5
m
>12-m,解得m>10,
又P在线段CD上,所以m≤12,
即m的取值范围是10<m≤12.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,求折痕EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是(  )
A.6
2
B.6C.3
2
D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的(  )
A.
1
2
B.
1
4
C.
1
8
D.
1
16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l表示草原上一条河的河堤,在河堤的一侧有两个村庄A、B,它们到河堤l的距离分别为AC=30km,BD=40km,两个村庄A、B之间的距离为50km.有一牧民骑马从A村出发到B村,途中要到河边给马饮一次水.
(1)在图中标出使牧民行驶距离最短的饮水点P;
(2)若他在上午8点出发,以每小时30km的平均速度前进,则他能否在上午10点30分之前到达B村.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

四边形ABCD内接于圆,已知∠ADC=90°,CD=4,AC=8,AB=BC.设O是AC的中点.
(1)设P是AB上的动点,求OP+PC的最小值;
(2)设Q,R分别是AB,AD上的动点,求△CQR的周长的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A、∠1、∠2之间的数量关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

画出图形的轴对称图形,MN为对称轴.

查看答案和解析>>

同步练习册答案