精英家教网 > 初中数学 > 题目详情
(1998•丽水)如图,AB是⊙O的直径,C是⊙O上的一点CD⊥AB,垂足是D.若∠CAB=α,则=( )

A.cos2α
B.cosα
C.sin2α
D.sinα
【答案】分析:在直角△ADC中,利用三角函数的定义可以得到AD=AC•cosα;
同样在直角△ABC中可以得到AC=AB•cosα,然后代入所求的比例式即可得到结果.
解答:解:∵AB是⊙O的直径,
∴∠ACB=90°.
而CD⊥AB,
∴在直角三角形ADC中,AD=AC•cosα.
在直角三角形ABC中,AC=AB•cosα,
∴AD=AB•cos2α,
∴AD:AB=cos2α.
故选A.
点评:本题主要根据圆周角定理和三角函数进行求解.根据边来选择正确的三角函数是求解的关键.
练习册系列答案
相关习题

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(1998•丽水)如图,在△ABC中,AB=AC=13,BC=10,AH⊥BC,H是垂足,D是BC上的点,DE⊥AB,E是垂足,DF∥AB,交AC于点F.
(1)求证:△DBE∽△ABH;
(2)设BD=x,△DEF的面积为y,写出y关于x的函数关系式;
(3)当△DEF的面积y为最大时,求tan∠EFD的值.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:选择题

(1998•丽水)如图,已知△ADE∽△ABC,相似比为2:3,则=( )

A.3:2
B.2:3
C.2:1
D.不能确定

查看答案和解析>>

科目:初中数学 来源:1998年浙江省丽水市中考数学试卷 题型:填空题

(1998•丽水)如图,已知⊙P的半径OD=5,OD⊥AB,垂足是G,OG=3,则弦AB=   

查看答案和解析>>

科目:初中数学 来源:1998年浙江省丽水市中考数学试卷 题型:填空题

(1998•丽水)如图,直线AB与CD相交于点O,已知∠AOD=120°,则∠COB的补角是    度.

查看答案和解析>>

同步练习册答案