精英家教网 > 初中数学 > 题目详情
(2010•温州)如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

【答案】分析:(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求出抛物线的解析式;
(2)过B作BC⊥x轴于C,根据A、B的坐标易求得OC=BC=AC=2,由此可证得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可证得△OAB是等腰直角三角形;
(3)当△OAB绕点O按顺时针方向旋转135°时,OB′正好落在y轴上,易求得OB、AB的长,即可得到OB′、A′B′的长,从而可得到A′、B′的坐标,进而可得到A′B′的中点P点的坐标,然后代入抛物线中进行验证即可.
解答:解:(1)由题意得
解得
∴该抛物线的解析式为:y=-x2+2x;

(2)过点B作BC⊥x轴于点C,则OC=BC=AC=2;
∴∠BOC=∠OBC=∠BAC=∠ABC=45°;
∴∠OBA=90°,OB=AB;
∴△OAB是等腰直角三角形;

(3)∵△OAB是等腰直角三角形,OA=4,
∴OB=AB=2
由题意得:点A′坐标为(-2,-2
∴A′B′的中点P的坐标为(-,-2);
当x=-时,y=-×(-2+2×(-)≠-2
∴点P不在二次函数的图象上.
点评:此题主要考查了二次函数解析式的确定、等腰直角三角形的判定、图形的旋转变化等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•温州)如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《圆》(15)(解析版) 题型:解答题

(2010•温州)如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2
(1)求⊙O1的半径;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《三角形》(20)(解析版) 题型:解答题

(2010•温州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB′,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:初中数学 来源:2010年浙江省温州市中考数学试卷(解析版) 题型:选择题

(2010•温州)如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案