精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PE⊥AB,PF⊥BC时,如图1,则的值为     
(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;
(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

解:(1)
(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN。

∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN。
又∵∠PME=∠PNF=90°,∴△PME∽△PNF。

由(1)知,

(3)变化。证明如下:
如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB。

∵PM∥BC,PN∥AB,
∴∠APM=∠PCN,∠PAM=∠CPN。
∴△APM∽△PCN。
,得CN=2PM。
在Rt△PCN中,

∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN。
又∵∠PME=∠PNF=90°,∴△PME∽△PNF。

的值发生变化

解析试题分析:(1)证明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值:
∵矩形ABCD,∴AB⊥BC,PA=PC。
∵PE⊥AB,BC⊥AB,∴PE∥BC。∴∠APE=∠PCF。
∵PF⊥BC,AB⊥BC,∴PF∥AB。∴∠PAE=∠CPF。
∵在△APE与△PCF中,∠PAE=∠CPF,PA=PC,∠APE=∠PCF,
∴△APE≌△PCF(ASA)。∴PE=CF。
在Rt△PCF中,,∴
(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;
(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得;然后证明△PME∽△PNF,从而由求得的值。与(1)(2)问相比较,的值发生了变化。 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).

(1)若以格点P、A、B为顶点的三角形与△ABC相似但不全等,请作出所有符合要求的点P;
(2)请写出符合条件格点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.

(1)求证:∠CBP=∠ABP;
(2)求证:AE=CP;
(3)当,BP′=时,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.

(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A,B两点不重合时,求的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1。求出点M的坐标并证明你的结论。

解:M(      
证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=   度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(   ),∠BDM=∠BMD(同理),
∴∠ACM= (180°-   ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM与△BDM中,
∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;

(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
(2)图②中若DE︰EC=3︰1,计算BF︰FC=     ;图③中若DE︰EC=4︰1,计算BF︰FC=     
(3)图④中若DE︰EC=︰1,猜想BF︰FC=       ;并证明你的结论

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图是几何体的三视图,该几何体是

A.圆锥B.圆柱C.正三棱柱D.正三棱锥

查看答案和解析>>

同步练习册答案