精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,CF=BF,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:C是弧BD的中点;
(2)若AD=3,⊙O的半径为4,求BC的长.
分析:(1)首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,又由CE⊥AB,利用同角的余角相等,可求得∠BCE=∠BAC,又由CF=BF,利用等边对等角,可得∠BCE=∠DBC,即可判定∠BAC=∠DBC,则可得C是弧BD的中点;
(2)首先作CG⊥AD于点G,易证得Rt△BCE≌Rt△DCG可得AE=AB-BE=AG=AD+DG,即可求得BE的长,由△BCE∽△BAC,即可得BC2=BE•AB=20,继而求得BC的长.
解答:(1)证明:如图,连接AC,
∵CF=BF,
∴∠BCE=∠DBC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC+∠ABC=90°,
∵CE⊥AB,
∴∠BCE+∠ABC=90°,
∴∠BCE=∠BAC,
∴∠DBC=∠BAC,
BC
=
CD

∴C是弧BD的中点;

(2)解:作CG⊥AD于点G,
∵C是弧BD的中点,
∴CD=CB,∠CAG=∠BAC,即AC是∠BAD的角平分线.
∴CE=CG,AE=AG.
在Rt△BCE与Rt△DCG中,
CE=CG
CB=CD

∴Rt△BCE≌Rt△DCG(HL),
∴BE=DG,
∴AE=AB-BE=AG=AD+DG,
∵AD=3,⊙O的半径为4,
即 8-BE=3+DG,
∴2BE=5,即 BE=2.5,
又∵∠CBE=∠ABC,∠CEB=∠ACB=90°,
∴△BCE∽△BAC,
BC
AB
=
BE
BC

∴BC2=BE•AB=20,
解得:BC=±2
5
(舍去负值),
∴BC=2
5
点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、圆周角定理、等腰三角形的性质以及角平分线的性质等知识.此题综合性很强,难度适中,注意数形结合思想与方程思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案