精英家教网 > 初中数学 > 题目详情
14.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x-4)2

分析 直接根据“左加右减”的原则进行解答即可.

解答 解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x-4)2
故答案为:y=(x-4)2

点评 本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.已知:如图所示,动点P在函数y=$\frac{1}{2x}$(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E、F.
(1)求AF•BE的值.
(2)求AF2+BE2的最值.
(3)求证∠EOF=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(-5,0)、B(1,0)两点,与y轴交于点C,抛物线的顶点为D.
(1)直接写出顶点D、点C的坐标(用含a的代数式表示);
(2)若∠ADC=90°,试确定二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知抛物线y=ax2-4ax与x轴交于点A、B,顶点C的纵坐标是-2,那么a=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为(  )
A.2sinαB.2cosαC.2tanαD.2cotα

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.
(1)求证:AE⊥CD;
(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:$\sqrt{3}$.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,$\sqrt{3}$≈1.73.)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知一个坡的坡比为i,坡角为α,则下列等式成立的是(  )
A.i=sinαB.i=cosαC.i=tanαD.i=cotα

查看答案和解析>>

同步练习册答案