精英家教网 > 初中数学 > 题目详情

如图,ABC的内接三角形,P为BC延长线上一点,PAC=B,AD为O的直径,过C作CGAD于E,交AB于F,交O于G。

(1)判断直线PA与O的位置关系,并说明理由;

(2)求证:AG2=AF·AB;

(3)若O的直径为10,AC=2,AB=4,求AFG的面积.

 

 

(1)PA与O相切理由见解析;(2)证明见解析;(3)3.

【解析】

试题分析:(1)连接CD,由AD为O的直径,可得ACD=90°,由圆周角定理,证得B=D,由已知PAC=B,可证得DAPA,继而可证得PA与O相切.

(2)连接BG,易证得AFG∽△AGB,由相似三角形的对应边成比例,证得结论.

(3)连接BD,由AG2=AF•AB,可求得AF的长,易证得AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.

试题解析:【解析】
(1)PA与
O相切.理由如下:

如答图1,连接CD,

AD为O的直径,∴∠ACD=90°.

∴∠D+CAD=90°.

∵∠B=D,PAC=B,∴∠PAC=D.

∴∠PAC+CAD=90°,即DAPA.

点A在圆上,

PA与O相切.

(2)证明:如答图2,连接BG,

AD为O的直径,CGAD,.∴∠AGF=ABG.

∵∠GAF=BAG,∴△AGF∽△ABG.

AG:AB=AF:AG. AG2=AF•AB.

(3)如答图3,连接BD,

AD是直径,∴∠ABD=90°.

AG2=AF•AB,AG=AC=2,AB=4AF=.

CGAD,∴∠AEF=ABD=90°.

∵∠EAF=BAD,∴△AEF∽△ABD. ,即,解得:AE=2.

.

.

考点:1. 圆周角定理;2.直角三角形两锐角的关系;3. 相切的判定;4.垂径定理;5.相似三角形的判定和性质;6.勾股定理;7.三角形的面积.

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(广西贺州卷)数学(解析版) 题型:填空题

如图,等腰ABC中,AB=ACDBC=15°AB的垂直平分线MNAC于点D,则A的度数是

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西百色卷)数学(解析版) 题型:选择题

下列图形中,是中心对称图形的是(  )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西河池卷)数学(解析版) 题型:选择题

如图,点A,点B的坐标分别是,将线段AB绕A旋转180°后得到线段AC,则点C的坐标为( )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西河池卷)数学(解析版) 题型:选择题

如图,ab,1=55°,2=65°,则3的大小是( )

A.50° B.55° C.60° D.65°

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西桂林卷)数学(解析版) 题型:解答题

解不等式:,并把解集在数轴上表示出来.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西桂林卷)数学(解析版) 题型:填空题

分解因式:a2+2a= .

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西崇左卷)数学(解析版) 题型:解答题

如图,在四边形ABCD中,对角线AC,BD相交于点O,且ACBD,点E,F,G,H分别是AB,BC,CD,DA的中点,依次连接各边中点得到四边形EFGH,求证:四边形EFGH是矩形.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(广西南宁卷)数学(解析版) 题型:选择题

数据1,2,4,0,5,3,5的中位数和众数分别是 ( )

A3和2 (B3和3 (C0和5 (D3和5

 

查看答案和解析>>

同步练习册答案