| 解:图2成立;图3不成立. 图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°, 又∵∠C=90°, ∴DM∥BC,DN∥AC, ∵D为AB边的中点, 由中位线定理可知:DN= ∵AC=BC, ∴MD=ND, ∵∠EDF=90°, ∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°, ∴∠MDE=∠NDF, ∴△DME≌△DNF, ∴S△DME=S△DNF, ∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF, 由以上可知S四边形DMCN= ∴S△DEF+S△CEF= 图3不成立. 证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°) S△DEF=S△DBF+S四边形DBFE, =S△DEC+S四边形DBFE, =S五边形DBFEC, =S△CFE+S△DBC, =S△CFE+ ∴S△DEF﹣S△CFE= 故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF= |
|
科目:初中数学 来源: 题型:
A、
| ||
| B、24π | ||
C、
| ||
| D、12π |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com