【题目】如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四种结论:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2.其中正确结论的序号是( )
A. ①② B. ②③ C. ②④ D. ③④
【答案】C
【解析】
连接AD,根据圆周角定理可知∠ADB=90°,再由CD=CB可知AD是BC的垂直平分线,可知②正确;连接DE,BE,由圆内接四边形的性质可知∠CDE=∠CAB,故可得出△CDE∽△CAB,由此可判断出④正确.
连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.
∵CD=BD,
∴AD是BC的垂直平分线,
∴AC=AB,故②正确;
∵AC=AB,
∴∠ABC=∠C=70°,
∴∠BAC=40°,故①错误;
连接BE,DE,
∵AB为⊙O的直径,
∴∠AEB=90°,
∵∠BAC=40°,
∴∠ABE=50°,
∴∠BAC≠∠ABE,
∴AE≠BE,故③错误;
∵四边形ABDE是圆内接四边形,
∴∠CDE=∠CAB,
∴△CDE∽△CAB,
∴,即,
∴CEAB=2BD2,故④正确.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.
(1)求证:△COM∽△CBA;
(2)求线段OM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.
(1)如图①,当点D在线段BC上时:
①BC与CE的位置关系为 ;
②BC、CD、CE之间的数量关系为 .
(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.
(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:
(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.
(1)求证:∠DCA=∠EBC;
(2)延长BE交AD于F,求证:AB2=AF·AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系 ;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,
(1)求m的取值范围;
(2)若x=1是方程的一个根,求m的值和另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个几何体的三视图.
(1)写出该几何体的名称,并根据所示数据计算这个几何体的表面积;
(2)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com